Step of Proof: equiv_rel_iff
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
equiv
rel
iff
:
Refl(
;
A
,
B
.
A
B
) & Sym(
;
A
,
B
.
A
B
) & Trans(
;
A
,
B
.
A
B
)
latex
by
InteriorProof
((((((Unfolds ``refl sym trans`` 0)
CollapseTHEN (GenUnivCD))
)
CollapseTHEN (GenUn
CollapseTHENM (HypBackchain))
)
CollapseTHEN ((Auto_aux (first_nat 1:n
CollapseTHEN ((Aut
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
P
Q
,
P
Q
,
x
:
A
.
B
(
x
)
,
Trans(
T
;
x
,
y
.
E
(
x
;
y
))
,
Sym(
T
;
x
,
y
.
E
(
x
;
y
))
,
P
Q
,
Refl(
T
;
x
,
y
.
E
(
x
;
y
))
,
P
&
Q
,
t
T
,
Lemmas
iff
wf
origin